
Graph Databases- An Overview

ShefaliPatil1 , GauravVaswani2 , Anuradha Bhatia3

1Student, ME Computers, Terna College of Engg, Navi Mumbai

2 Student, , Computer Technology, VESIT, Mumbai
3 Computer Technology Department, VES Polytechnic,Mumbai

Abstract: For a long time, data has been typically stored in tabular form
so as to increase the indexing and readability. Nowadays, the trends are
changing as Graph databases are quickly gaining popularity. In fact, it
would not be wrong to call them "the future of DBMS". The
representation of data in the form of a graph lends itself well to
structured data with a dynamic schema. This paper goes over current
applications and implementations of graph databases, giving an
overview of the different types available and their application. Due wide
spread of graph algorithms and models, no standard system or query
language has been denied for graph databases. Research and industry
adoption will determine the future direction of graph databases.
Keywords: Graph databases, Application areas, graph models,
distributed databases, key value databases.

I. INTRODUCTION - GRAPHS

Graphs are the most generic form of storing data in a visual
manner in the world of data structures. Graphs store data in
the form of nodes (data blocks) where one node points to
another. We can reach any data block from another.

II. WHAT ARE GRAPH DATABASES?
Technically, Graph Databases are a way of storing data in the
form of nodes, edges and relationships which provide
index-free adjacency.
Data is stored in the form of nodes, every node (or data
block) is connected to another one and this connection is
called an edge. A few words are also mentioned on these
edges to further define the connection between one node and
the other – this description is called relationship. Since each
node can directly look-up the node it is connected to (they are
all connected through edges, remember?), this eliminates the
need of searching a data block by its 'index', hence the
term 'index-free adjacency'.
Today, most of the social networking sites like Facebook use
graph databases to store their massive amount of data.Usage of
Graph databases
Graph databases find their usage when data to be stored is
associative, meaning when the relationship between two data
blocks matters a lot. Relational databases (tabular form) are
not that good when a relationship exists between two data
blocks, especially if it's the relationship that's more important
than the actual data blocks. Graph databases are a very
intuitive and expressive way to describe any form of data – as
if we're writing something on whiteboards. They let you
represent related data as it is – as a set of objects connected
by a set of relationships each with its own set of descriptive
properties.

III. THE PROPERTY GRAPH MODEL
 A property graph is made up of nodes, relationships and

properties.
 Nodes contain properties. Think of nodes as documents

that store properties in theform of arbitrary key-value
pairs. The keys are strings and the values arbitrary
datatypes.

 Relationships connect and structure nodes. A relationship
always has a direction,a label, and a start node and an
end node--there are no dangling relationships.Together, a
relationship’s direction and label add semantic clarity to
the structuringof nodes.

 Like nodes, relationships can also have properties. The
ability to add properties to relationships is particularly
useful for providing additional metadata for graph
algorithms, adding additional semantics to relationships
(including quality and weight), and for constraining
queries at run time.These simple primitives are all we
need to create sophisticated and semantically rich
models. So far, all our models have been in the form of
diagrams.

 Diagrams are great for describing graphs outside of any
technology context, but when it comes to using a
database, we need some other mechanism for creating,
manipulating and querying data.

Example

Figure 1

In this example, Mike has a teacher named George, whose
son Ryan is his friend. This has been represented by writing
relationships on the edges and properties in the circle. This is
very close to how the data is actually stored in a graph
database. It would not have been that easy if we were using a
table to depict such a relationship.

ShefaliPatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 657-660

www.ijcsit.com 657

IV. THE POWER OF GRAPH DATABASES
Performance: One compelling reason, then, for choosing a
graph database is the sheer performance increase when
dealing with connected data versus relational databases and
NOSQL stores. In contrast to relational databases, where
join-intensive query performance deteriorates as the dataset
gets bigger, with a graph database performance tends to
remain relatively constant, even as the dataset grows. This is
because queries are localized to a portion of the graph. As a
result, the execution time for each query is proportional only
to the size of the part of the graph traversed to satisfy that
query, rather than the size of the overall graph.
Flexibility: As developers and data architects we want to
connect data as the domain dictates, thereby allowing
structure and schema to emerge in tandem with our growing
understanding of the problem space, rather than being
imposed upfront, when we know least about the real shape
and intricacies of the data. Graph databases address this want
directly. Graphs are naturally additive, meaning we can add
new kinds of relationships, new nodes, and new sub graphs to
an existing structure without disturbing existing queries and
application functionality. These things have generally
positive implications for developer productivity and project
risk. Because of the graph model’s flexibility, we don’t have
to model our domain in exhaustive detail ahead of time—a
practice which is all but foolhardy in the face of changing
business requirements. The additive nature of graphs also
means we tend to perform fewer migrations, thereby reducing
maintenance overhead and risk.
Agility: We want to be able to evolve our data model in step
with the rest of our application, using a technology aligned
with today’s incremental and iterative software delivery
practices. Modern graph databases equip us to perform
frictionless development and graceful systems maintenance.
In particular, the schema-free nature of the graph data model,
coupled with the testable nature of a graph database’s API
and query language, empower us to evolve an application in a
controlled manner

V. REAL WORLD USE CASES OF GRAPH DATABASES
Graph databases are becoming very popular in the real world.
Here are some arenas where graph databases have found their
use among the world's leading companies:
Page rank: Google uses the concept of graph databases in
calculating the order of displaying the search results. A
directed graph is used to connect the world wide web pages
together as nodes and the hyperlinks to each other as the
edges. The number of outgoing edges per graph is assigned as
the weight for the edge. Thus, page rank is decided as per the
weight on one edge as compared to other edges.
Data Management: Cisco, one of the world's leading
networking organizations, has recently adopted a hierarchical
management system which is centrally based on the graph
utility of the Neo4j database. This provides them with a very

fast access to data as compared to Oracle RAC. They are
implementing this concept on product hierarchy too in order
to serve the user in real time.
Social Interconnect: Websites like Facebook, Twitter,
LinkedIn, Viadeo, Glassdoor are storing their connections in
the form of graph databases as relationships.
Recommendations are important from the point of view of
their users. Relationships and connections can be very well
managed and accessed in real time as compared to relational
databases.
Network management: Telecommunication companies like
SFR, Telenor, Huwai, Just Dial have shifted to graph
databases to model their network which consists of highly
interconnected plans, customers and groups. Graphs help
them in analyzing networks and data centers and also save
them from the conventional time-consuming process of
authentication. Most importantly, by using graphs, the failure
cases are also covered and recovery plans are always just a
node away which obviously saves a lot of time whenever any
hazard occurs.
Security and access management : The creative cloud of
Adobe uses a graph database structure to link authentication
details and thereby grant access to contents for its
administrators as well as users.
Bioinformatics : Era7 is a company that deals with DNA
sequencing i.e., storing information on proteins, enzymes etc.
This is done with the help of Bio4j, which is a bioinformatics
graph DB system. It stores the information about genes,
proteins and other complex interrelated information. Bio4j
has all the features of Neo4j, world’s leading graph database,
and is thus very scalable and flexible.

VI. GRAPH APPLICATIONS
Some argue that most data is inherently a graph, and that all
data can be stored as a graph. Using graphs to store data not
only allows for a dynamic schema, but also provides
representations of data not previously possible. The ability
overlay different graphs (Ex. social, temporal, and spacial) on
data extends the functionality of querying data. In Managing
and Mining Graph Data

VII. GRAPH DATABASES VS RELATIONAL DATABASES
A graph database is a good fit for exploring data that are
structured like a graph, in particular when relationships
between items are significant. By contrast relational
databases are well suited to find All- like queries.
To make it clear let’s consider a example where we try to
store companies, people who try to work for them, and how
long they have been working there. For example- we are
trying to find all people working at Google.
When relational model we execute the following query which
could require probably 3 index lookups corresponding to the
foreign keys in the model.

ShefaliPatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 657-660

www.ijcsit.com 658

Figure 2

In case of graph the query will require 1 index lookup ,then
will traverse relationships by dereferencing physical pointers
directly.

Figure 3

Comparing the performance of relational databases on graph
analytics. Here a leading graph database system (Neo4j) and
three relational databases: a row-oriented database (MySQL),
a column-oriented database (Vertica), and a main-memory
database (VoltDB) are compared. T wo queries,
PageRank and Shortest Paths, on each of these systems.
Considering two datasets from the Stanford large network
dataset collection:

 A Facebook dataset having 4K nodes and 88K
edges, and

 A Twitter dataset having 81K nodes and 1.8M
edges.

Figures 4(a) and 4(b) show the result (below).

Figure 4

We can see that relational databases outperform Neo4j on
PageRank by up to two orders of magnitude. This is because
PageRank involves full scanning and joining of the nodes and
edges table, something that relational databases are very good
at doing. Finding Shortest Paths involves starting from a
source node and successively exploring its outgoing edges, a
very different access pattern from PageRank. Still, we see
from Figure 4(b) that relational databases match or
outperform Neo4j in most cases. In fact, Vertica is more than
twice faster than Neo4j. The only exception is VoltDB over
Twitter dataset.

ShefaliPatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 657-660

www.ijcsit.com 659

VIII. DISTRIBUTED GRAPH DATABASES
Distributed Graph databases focus on distributing large
graphs across a framework. Partitioning graph data is a non-
trivial problem, optimal division of graphs requires finding
sub- graphs of a graph. For most data, the number of links or
relationships is too large to efficiently compute an optimal
partition; therefore most databases use random partitioning.
Horton(2010) is a transactional graph processing framework
created by Microsoft. Horton makes use of the Orleans cloud
framework in order to query large distributed graphs. Instead
of adopting a map/reduce architecture, Horton works with a
distributed graph, passing a state machine across nodes. This
allows for better ad-hoc querying in comparison to
map/reduce systems. InfiniteGraph(2010)[10] is a distributed-
oriented system that supports large-scale graphs and efficient
graph analysis. Rather than in-memory graphs, this system
supports efficient traversal of graphs across distributed data
stores. This works by creating a federation of compute nodes
operated through their java API.

IX. KEY-VALUE GRAPH DATABASES
Key-value graph databases simplify the object related model
of graph databases to allow for greater horizontal scalability.
These models build o, or on top of, existing key-value stores
allowing for greater scalability and partitioning of graph
nodes. Vertex DB(2009) is a key-value disk store that makes
use of Tokyo Cabinet. The graph database focuses on a
vertex graph with added support for automatic garbage
collection. Cloud Graph(2010) is an in-development, fully
transactional graph database written in C#. It takes advantage
of key/value pairs to store data both in memory and on-disk.
Cloud Graph has also created its own graph query language
(GQL).Redis Graph(2010) is an implementation of a graph

database in python using redis. Redis is a modern key-value
store; the python implementation is minimalistic, creating an
API in only forty lines of code.
Trinity(2011] is a RAM-based key value store under
development by Microsoft Research. It uses message passing
over a distributed system, achieving low latency queries on
large distributed graphs. The benefitt of in-memory key value
storage can be seen with increased performance

X. CONCLUSION
Through this paper we have tried to cover about the brief
overview about the graph databases. The databases such as
key value database, distributed graph databases. These
databases can be used for web development using php and
Neosql which can be dealt in future.

XI. REFERENCES
[1]Allegrograph. http://www.franz.com/agraph/ allegrograph/.
[2] Cloudgraph. http://www.cloudgraph.com/.
[3] Dex. http://www.sparsity-technologies.com/dex.
[4] Filament. http://filament.sourceforge.net/.
[5] G-store. http://g-store.sourceforge.net/.
[6] Giraph. https://github.com/apache/giraph.
[7] Graph connect. http://www.graphconnect.com/.
[8] Horton. http://research.microsoft.com/en-us/projects/ldg/.
[9] Hypergraphdb. http://www.hypergraphdb.org/.
[10] Innitegraph. http://infinitegraph.com/.
[11] Neo4j. http://www.neo4j.org/.
[12] Orientdb. http://www.orientdb.org/.
[13] Phoebus. https://github.com/xslogic/phoebus.
[14] redis graph. https://github.com/tblobaum/redis-graph.
[15] Sones. http://www.dekorte.com/projects/opensource/vertexdb/.
[16] Trinity. http://research.microsoft.com/en-us/projects/trinity/.
[17] Vertexdb. http://www.dekorte.com/projects/opensource/vertexdb/.

ShefaliPatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 657-660

www.ijcsit.com 660

